内容简介
基于Web挖掘的个性化信息推荐是解决当前互联网“信息过载”问题的重要手段之一。本书在继承国内外相关研究成果的基础上,建立了基于Web挖掘的个性化信息推荐模型,并构建了语法层次、语义层次和语用层次的个性化信息推荐方法体系。然后,从语法层次的角度,利用Web使用挖掘方法研究了Web用户偏好分析与推荐问题,并借鉴复杂网络中的社团结构划分方法,提出了基于网络书签的个性化信息推荐方法;从语义层次的角度,提出了基于Web文本挖掘的推荐规则获取与匹配方法,分析了基于Web领域本体的个性化信息推荐方法,研究了基于社会化标签的Web用户兴趣建模方法;从语用层次的角度,利用用户反馈和贝叶斯网络理论讨论了Web用户效用函数的构建方法。
本书内容丰富、应用性强,可供信息管理、计算机应用等领域从事相关研究的专家学者、工程技术人员及高等院校相关专业教师、研究生参考使用。