内容简介
本书介绍了故障诊断及贝叶斯网络的基本理论,阐述了贝叶斯网络理论在智能故障诊断方法中的应用。提出了一种基于模型分解的复杂系统诊断模型建立方法,能够在最小领域专家负担情况下建立诊断贝叶斯网络模型;基于Gibbs抽样的诊断模型评估算法,采用等概率故障注入算法,能够实现对诊断模型的全面覆盖测试,对诊断模型进行全面评估。介绍了一种基于簇树的通用近似诊断推理算法,结合了簇树精确算法和重要性抽样原理,通用性好、计算效率高。基于进化计算的贝叶斯网络结构学习算法,对缺失数据处理是基于后验网络的,补充数据可信度比较高,在丢失数据较多的情况下网络结构学习性能较好。
本书适用于从事故障诊断研究领域的高等学校研究生和有关技术人员参考,对模式识别、知识发现等人工智能领域的研究人员也有一定的参考价值。